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ABSTRACT 

 
In this paper, we propose a novel method for speech rate 
estimation without requiring automatic speech recognition. It 
extends the methods of spectral subband correlation by including 
temporal correlation and the use of selecting prominent spectral 
subbands for correlation. Further more, to address some of the 
practical issues in previously published methods, we introduce 
some novel components into the algorithm such as the use of 
pitch confidence, magnifying window, relative peak measure 
and relative threshold. By selecting the parameters and 
thresholds from realistic development sets, this method achieves 
a 0.972 correlation coefficient on syllable number estimation 
and a 0.706 correlation on speech rate estimation. This result is 
about 6.9% improvement than current best single estimator and 
3.5% improvement than current multi-estimator evaluated on the 
same switchboard database. 

 

1. INTRODUCTION 
 
Speech is a crucial component in human computer interaction. 
While tremendous progress has been made in automatic speech 
recognition, speech transcription -- which is the output of 
automatic speech recognition -- is far from providing all the 
information that one could retrieve from speech. For example, 
intonation, stress, timing, rhythm, and rate of speech all carry 
important information in speech and are crucial in speech 
perception. Inclusion of such information can facilitate better 
machine recognition and understanding of speech. Speech rate is 
one such key attribute. In this paper, we propose an algorithm 
for speech rate estimation. 
 
1.1. Why rate of speech?  

Speech rate has been initially investigated in the context acoustic 
modeling of speech recognition. It is apparent that the accuracy 
of a speech recognition system is severely affected when there 
are mismatches between the training and testing conditions.  
There are many possible factors causing these mismatches and 
speech rate is one of them [1]. Specifically, for better adapting to 
fast or slow speech, there has to be an estimation of speech rate. 
Only with this estimation could one select appropriate pre-
trained acoustic models or adaptively set transition probabilities 
of the HMMs [4][5]. 
In recent years, with increasing interest in spontaneous speech 
recognition and interpretation, the role of speech rate estimates 

has become even more important. Research has found that local 
speech rate correlates with discourse structure. For example, 
global analysis of the discourse structure in paragraphs and 
clauses reveals that for each of the speakers the average syllable 
duration of the first run of a paragraph is longer than the overall 
mean value per speaker in more than 60 % of the cases [3]. 
Local speech rate also plays an important role in the context of 
sentence boundary detection and disfluency detection. It has 
been suggested that people tend to have longer syllable duration, 
or say slower local speaking rate, at those events [6][7]. Speech 
rate also correlates with prosodic prominence. Rate of speech 
detection and normalization has been found to be necessary in 
solving such problems [8]. 
 
1.2. How to measure speech rate? 

It is quite natural for humans to use the term "fast", "normal", 
"slow" to describe speech rate. This classification has been 
applied in applications such as acoustic model selection [9] and 
HMM normalization [15]. However, this sort of classification is 
in itself fuzzy and needs humans to transcribe or manipulate. 
Practically, this classification can not be directly conveyed in the 
acoustic signal. So researchers in this area have adopted an 
intermediate quantitative measure of speech.  
In most of the cases, speech rate is measured by counting 
phonetic elements per second. Words, syllables [9], stressed 
syllables, phonemes [10] are all possible candidates. However, it 
has been observed that humans do not follow strictly or 
consistently use these phonetic elements while control their 
speaking rate [11]. In some studies, the phone duration 
percentile, a comparison of measured versus expected phone 
duration, is shown to be robust with respect to lexical content 
and consistent with previous findings about the statistics of both 
long-term and short-term speech rate [11]. But for this method, 
the expected phone duration model can be well modeled only in 
very limited cases. For example, it cannot model large number 
of speakers or male and female speakers simultaneously. 
Evidence from reiterative speech study [16] supports syllable to 
be a good estimate of speech rhythm, which is a similar measure 
to speech rate. Syllable is defined as a combination of 
elementary sounds uttered together with a single effort or 
impulse of the voice. Intuitively, syllables, by this definition, 
should have quite an even distribution under normal speed 
speech and their rate could be changed as a result of speech rate 
change. So it is used widely among speech rate researchers [6][9] 
[11]. In this work, we use syllable number per second as a 
measure of speech rate. 
 
1.3. Previous work in speech rate estimation 



1.3.1. With or without ASR? 
Using automatic speech recognition to retrieve duration 
information about phonetic elements is straight forward. It is 
easy to get a phonetic alignment during speech recognition 
decoding and use this alignment timing information as a measure 
of speech rate [10]. It works well when speech recognition is 
reliable. But in the context of spontaneous speech, speech 
recognition is far from mature to robustly and precisely estimate 
these parameters. To address this issue at least partially, 
supervised alignment has been proposed. In cases where 
transcription is available, forced alignment can be used to 
provide better speech unit estimate. This method gives much 
more accuracy and has been successfully used in research [6][7]. 
However, such is not the case in the problem we are targeting in 
this work.  
Moreover, one intended use of speech rate is to facilitate robust 
ASR in terms of appropriate model normalization and adaptation 
techniques. It is implied that speech rate estimation serves like a 
front end for speech recognition for a number of applications. 
Using speech recognition itself to address this problem is hence 
logically unsuitable. So it is quite natural to use the acoustic 
signal directly to study speech rate. 

 
1.3.2. Acoustic study of speech rate 
One classical way to get syllable count is through a full band 
spectrum/energy analysis and measures the dominant peak of the 
long-term envelope [13]. This however results in a lot of noise in 
the final curve and hence it is difficult to get syllable count 
robustly. This fact is apparent in Fig 1(d). The sample speech 
"some form" (from Switchboard) should only have 2 syllables, 
but (d) shows at least 4 dominant peaks. The results are hence 
not satisfactory. 

 
Figure 1. Sample speech "SOME FORM" (from switchboard) 

a) speech waveform b) wideband spectrum c) correlation 
envelope(approach in this paper) d) wideband energy envelope 

As an alternate approach to the same problem, the first spectral 
moment of the broad-band energy envelope has been used as a 
speech rate measure [12]. While this method provided improved 
performance with conversational speech, it was however shown, 
using a one hour subset of the manually transcribed Switchboard 
data, the correlation between transcribed syllable rate and 
experiment rate was only about 0.4 (when both were measured 
over between-pause spurts) [12].  
These two approaches assume that the wide-band energy peak as 
a valid representation for speech rate measure. A critical 

question then is how much information is lost or distorted in this 
process of using the wide-band energy curve, a lower dimension 
abstraction of the speech waveform. Specifically, are these 
losses and distortion crucial? From these aforementioned results, 
and supported by the example in Fig 1(d), the answer seems that 
this loss is indeed critical. For instance, the formant structures 
are lost in the wide band energy representation and this feature is 
crucial in fast speech syllable identification.  
In [9], Morgan & Fosler-Lussier developed a sub-band based 
module that computes a trajectory that is the average product 
over all pairs of compressed sub-band energy trajectories. That 
is, if xi(n) is the compressed energy envelope of the ith spectral 
band, a new trajectory y(n) is defined as: 
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Where N is the number of bands, M=N(N-1)/2 is the number of 
unique pairs. By this method alone, correlation coefficients 
above 0.6 were achieved. Furthermore, it was shown in [9] that 
the performance would boost to 0.673 if multiple estimators 
were combined (wideband energy peak count, spectral moment 
count). It is apparent that this method addresses the formant 
structures we discussed earlier. By introducing a band wise 
correlation in the spectral domain, the syllable peak in the 
correlation curve gets boosted. But on the other hand, this 
algorithm does not address problems related to smoothness in 
the temporal domain.  
The following sections discuss our approach. Our algorithm will 
generate a correlation envelope as shown in Fig 1(c).  

 
2. FURTHER SPECIFIC ISSUES AND SOLUTIONS 

 
In addition to the above-mentioned problem, there are several 
further issues that need to be tackled in designing a good speech 
rate estimator. Many of these are not well addressed in previous 
work. In the work proposed in this paper, we will further study 
the acoustic nature of speech and propose a set of algorithms to 
address different acoustic observations and related issues. 
  
2.1. Background and consonant noise 

In the region 0.78s-0.85s and 1.05s-1.15s of Figure 1, there are 
some apparent background noises. Such noises tend to introduce 
extra peaks in the final curve. Consonants, especially fricatives, 
also sometimes contribute extra peaks. We apply 2 methods to 
deal with this problem.  
The first method is to use pitch (F0) information. When a peak is 
detected in a region with no voiced activity, it is rejected as 
noise. Since we do not care about the actual pitch value, it is 
helpful to use multi pitch estimators and fuse them together.  
The other method is to use relative threshold to filter out the 
noise. "Relative" here means a scale with respect to the 
maximum peak. Like all threshold problems, it is dangerous to 
set the threshold value in a greedy fashion. Since we have the 
other approach to deal with the noise, we set the threshold rather 
low. 
 
2.2. Energy curve smoothness 

In all these methods, an energy curve is utilized. Like all short-
time windowing methods, a larger window makes the curve 



smoother yet loses fine details. A smaller window provides more 
detail but makes the curve noisy and in turn renders peak 
counting difficult. 
In this paper, we propose a new method based on traditional 
windowing. Inspired by spectral cross correlation, and also by 
the fact that each syllable (i.e., similar spectral pattern) lasts for 
a while, we perform a cross correlation also in time domain. Let 
xt, xt+1… xt+K-1 represent an ascending time order of sub-band 
energy vectors with length K. Then compute yt as:  
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By this correlation, each syllable has a peak in its center, 
because it spans most of the part of this syllable. The parameter 
K is set by using a development test. 
 
2.3. Smearing 

In our experiments, and also those in [9], there are a number of 
individual cases where a high speaking rate sometimes results in 
smearing neighboring energy peaks. This makes it particularly 
difficult to derive a high number of syllables for that segment. 

 
Figure 2. Illustration of peak smearing shown for the word "in-

tro" (from switchboard corpus)  

Figure 2 shows a smearing case where "in" and "tro" show only 
1 peak. The reason is that the interval is smeared by the 
windowing and temporal correlation effect.  
Let w0, w1 … wK-1 represent a serial of window coefficients. 
Perform a weighting operation on x first: 

jtjjt xwx ++ =     (eq. 3) 

Here we choose w as Gaussian window centered in the middle of 
the window. The reason for this choice is to amplify any 
discontinuities between neighboring syllables. 
 
2.4 Over-estimation issues 

It is also observed that for some slow segments, people tend to 
shift the vowel formant to express some prosodic content. Such 
phenomena will bring extra peak estimates in the method as 
proposed in [9].  
As an example in figure3, "so" has only 1 syllable. For fixed 
sub-band, when one formant shifts from 1 band to another, it 
will generate one more peak.  

 
Figure3. Overestimation for "So" (from switchboard) 

To address this issue, we propose a "selected sub-band 
correlation" method. First, instead of choosing only 4 sub-bands, 
we apply a 19 sub-band (as a facility provided in tool [14]). 
After getting yt, we choose the top M elements to do cross 
correlation as in [9]. By setting M optimally through the 
development test, the experiments show that it helps to resolve 
this issue successfully.   
Another optimization relates to the relative peak measure. Each 
peak height is measured relative to the nearest largest minimum. 
For the extra peaks introduced by such formant movement, it 
always has a very low "height". By thresholding, such peaks 
could be removed. 
 

3. ALGORITHM AND DESIGN 
 
Inspired by these ideas, we implemented our full system 
according to the following steps: 
First, the speech is passed through a 19-channel filter bank 
analyzer to get energy vector series. Second, the energy vectors 
are windowed and cross-correlated temporally.  In the third step, 
result energy vector is cross-correlated in salient frequency 
bands. Finally, peak counting is performed on the final 
smoothed curve. Figure 4 gives a system flowchart.  

 
Figure4. System Flowchart 

Here are some additional implementation comments: 
1) The 19-channel filter bank analyzer uses two second-order 
section Butterworth band-pass filters [14]. Spaced as: 240 | 360 | 
480 | 600 | 720 | 840 | 1000 | 1150 | 1300 | 1450 | 1600 | 1800 | 
2000 | 2200 | 2400 | 2700 | 3000 | 3300 | 3750 
2) We apply 2 pitch estimators: ESPS get_f0 call and cepstrum 
based estimation [14], use the union of the two as the pitch 
estimate. 
3) For curve smoothing, we apply a Gaussian filter. 
 

4. EXPERIMENTS AND RESULT 
 
We use the same switchboard database and similar evaluation 
methods as in [9].  A total of 5565 spurts (all that we had in hand) 
were phonetically hand transcribed by linguists in the 
Switchboard Transcription Project at ICSI [2]. A transcribed 
syllable rate was computed by dividing the number of syllables 
occurring in the region by the length of the spurt. Similarly, we 
treat this rate as a reference rate. We use the detected rate to 
correlate with the reference rate to get the final agreement 
measure. 
The ideas and algorithm described above have a heavy heuristic 
flavor based on analysis of spontaneous speech. At this stage the 
approach is not set up as a straight machine learning approach 



where transcribed data help to setup optimal statistical models. 
We argue that, in fact, such learning ideas can benefit when we 
know what (and,   how) "feature" correlates with the subjects' 
production.  We believe that the "model" we setup here provides 
a step in the direction of helping handle the complexities 
underlying processing spontaneous speech.  
The biggest challenge comes from the setting of many 
parameters that exhibit complex, and often confounding, 
correlations between one another. We address the issue through 
the following methodology: 
Firstly, we are trying to group the parameters such that each 
group is independent or has little correlation with the others. The 
purpose of this step is to reduce the parameters' dimensionality 
such that a big complex problem can be divided into some small 
relatively simplified problems. In our experiment, the temporal 
correlating parameters, the spectral correlating parameters, the 
smoothing parameters/ peak counting thresholds are the 3 major 
groups. We normally fix the other 2 groups in an acceptable 
range and tune the current group's parameter using the 
development set.  
Secondly, we do a sensitivity analysis wherein we pay close 
attention to the parameters that are quite sensitive relative to 
those that are not that influential to the final performance.  For 
example, the temporal correlation window length ("K" in sec 2.2) 
was found to be sensitive and needed detailed experiments to set 
up. On the contrary, the temporal weighting parameters were 
less sensitive and relatively easy to setup.  
Thirdly, by carefully inspecting the data we can set reasonable 
bounds on parameter selection.  For example, the count of 
selected subband ("M" in sec 2.4) should have a close relation 
with formants numbers. So we only consider the range of 3 and 
slightly larger. This is a great reduction from the original 19 
bands. 
Lastly, we randomly select 315 spurts as a development set and 
used this to directly set the parameters of the algorithm. Of 
course, this is based on the good design of the previous steps. 
We always run several rounds of cross-validation until we reach 
a local maximum. 
With all these efforts, we achieve the following result in Table 1. 
Besides speech rate, we also measure the correlation coefficients 
between the reference and detected syllable numbers.  

Measure Correlation Mean error Std error
Syllable # 0.972 1.143 2.257 
Rate of speech 0.706 0.340 0.848 

Table 1. Results table 

This result is about 6.9% improvement than single estimator and 
3.5% improvement than multi-estimator evaluated on the same 
database in [9]. 
For the envelope, an example is provided in fig 1(c).  
 

5. CONCLUSIONS  
 

Experiments have shown that the method proposed in this paper 
offer further advantages over previous methods. For instance, 
the envelope output is smoother and has better syllable count 
performance than previous methods. (fig 1(c)). 
Based on the description in Sec 4, it is clear that the parameter 
selections are empirical and not guaranteed to by formal 
optimization. Even though we get fairly good performance, we 

still believe there is a great potential to further boost the 
performance. A possible alternative approach would be 
designing an adaptive algorithm for dynamic parameter 
adjustment. 
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